Skip to main navigation Skip to main content Skip to page footer

Arbeitspapier

Thinking Outside the Container: A Sparse Partial Least Squares Approach to Forecasting Trade Flows

Kieler Arbeitspapiere, 2179

Autoren

  • Stamer
  • V.

Erscheinungsdatum

JEL Classification

F17 C53

Schlagworte

Akademische Forschung

Prognose

Mehr zum Thema

Internationaler Handel

Global container ship movements may reliably predict global trade flows. Aggregating both movements at sea and port call events produces a wealth of explanatory variables. The machine learning
algorithm partial least squares can map these explanatory time series to unilateral imports and exports, as well as bilateral trade flows. Applying out-of-sample and time series methods on monthly
trade data of 75 countries, this paper shows that the new shipping indicator outperforms benchmark
models for the vast majority of countries. This holds true for predictions for the current and subsequent month even if one limits the analysis to data during the first half of the month. This makes
the indicator available at least as early as other leading indicators.

Kiel Institut Expertinnen und Experten

  • Dr. Vincent Stamer
    Kiel Institute Fellow

Mehr Publikationen

Themen

  • Blick über das Deck eines Containerschiffs

    Internationaler Handel

  • Demonstranten gegen den Krieg in der Ukraine

    Krieg gegen die Ukraine

Forschungszentren

  • Forschungszentrum

    Außenhandel