Skip to main navigation Skip to main content Skip to page footer

Journal Article

Post-processing for Bayesian analysis of reduced rank regression models with orthonormality restrictions

Autoren

  • Aßmann
  • C.
  • Boysen-Hogrefe
  • J.
  • Pape
  • M.

Erscheinungsdatum

DOI

10.1007/s10182-023-00489-5

JEL Classification

C11 C31 C51 C52

Schlagworte

Bayes'sche Schätzung

Post-Processing

reduzierte Rangregression

orthogonale Transformation

Modellauswahl

Stiefel-Mannigfaltigkeit

Orthonormality constraints are common in reduced rank models. They imply that matrix-variate parameters are given as orthonormal column vectors. However, these orthonormality restrictions do not provide identification for all parameters. For this setup, we show how the remaining identification issue can be handled in a Bayesian analysis via post-processing the sampling output according to an appropriately specified loss function. This extends the possibilities for Bayesian inference in reduced rank regression models with a part of the parameter space restricted to the Stiefel manifold. Besides inference, we also discuss model selection in terms of posterior predictive assessment. We illustrate the proposed approach with a simulation study and an empirical application.

Kiel Institut Expertinnen und Experten

  • Prof. Dr. Jens Boysen-Hogrefe
    Kiel Institute Researcher

Mehr Publikationen

Themendossiers

  • Vollautomatische Autoproduktion mit Roboterarmen

    Konjunktur

  • Europäische Flaggen vor einem EU Gebäude

    Spannungsfeld Europäische Union

  • Innenaufnahme der Kuppel des Reichstags

    Wirtschaftspolitik in Deutschland

Forschungszentren

  • Makroökonomie