Skip to main navigation Skip to main content Skip to page footer

Arbeitspapier

Inference for Systems of Stochastic Differential Equations from Discretely Sampled data: A Numerical Maximum Likelihood Approach

Autoren

  • Lux
  • T.

Erscheinungsdatum

JEL Classification

C58 G12 C13

Maximum likelihood estimation of discretely observed diffusion processes is mostly hampered by the lack of a closed form solution of the transient density. It has recently been argued that a most generic remedy to this problem is the numerical solution of the pertinent Fokker-Planck (FP) or forward Kol- mogorov equation. Here we expand extant work on univariate diffusions to higher dimensions. We find that in the bivariate and trivariate cases, a numerical solution of the FP equation via alternating direction finite difference schemes yields results surprisingly close to exact maximum likelihood in a number of test cases.

After providing evidence for the effciency of such a numerical approach, we illustrate its application for the estimation of a joint system of short-run and medium run investor sentiment and asset price dynamics using German stock market data.

Mehr Publikationen

Themendossiers

  • Vollautomatische Autoproduktion mit Roboterarmen

    Konjunktur

  • Europäische Flaggen vor einem EU Gebäude

    Spannungsfeld Europäische Union

  • Innenaufnahme der Kuppel des Reichstags

    Wirtschaftspolitik in Deutschland

Forschungszentren

  • Makroökonomie