Skip to main navigation Skip to main content Skip to page footer

Arbeitspapier

Forecasting Bilateral Refugee Flows with High-dimensional Data and Machine Learning Techniques

Autoren

  • Boss
  • K.
  • Gröger
  • A.
  • Heidland
  • T.
  • Krüger
  • F.
  • Zheng
  • C.

Erscheinungsdatum

JEL Classification

C53 C55 F22

Schlagworte

Asylsuchende

Flüchtingsströme

Mehr zum Thema

Migration

Globalisierung

Europäische Union & Euro

Schwellen-& Entwicklungsländer

Europa

We develop monthly refugee flow forecasting models for 150 origin countries to the EU27, using machine learning and high-dimensional data, including digital trace data from Google Trends. Comparing different models and forecasting horizons and validating them out-of-sample, we find that an ensemble forecast combining Random Forest and Extreme Gradient Boosting algorithms consistently outperforms for forecast horizons between 3 to 12 months. For large refugee flow corridors, this holds in a parsimonious model exclusively based on Google Trends variables, which has the advantage of close-to-real-time availability. We provide practical recommendations about how our approach can enable ahead-of-period refugee forecasting applications.

Kiel Institut Expertinnen und Experten

  • Prof. Dr. Tobias Heidland
    Forschungsdirektor

Mehr Publikationen

Themendossiers

  • Blick über das Deck eines Containerschiffs

    Internationaler Handel

  • Demonstranten gegen den Krieg in der Ukraine

    Krieg gegen die Ukraine

  • Europäische Flaggen vor einem EU Gebäude

    Spannungsfeld Europäische Union

Forschungszentren

  • Internationale Entwicklung