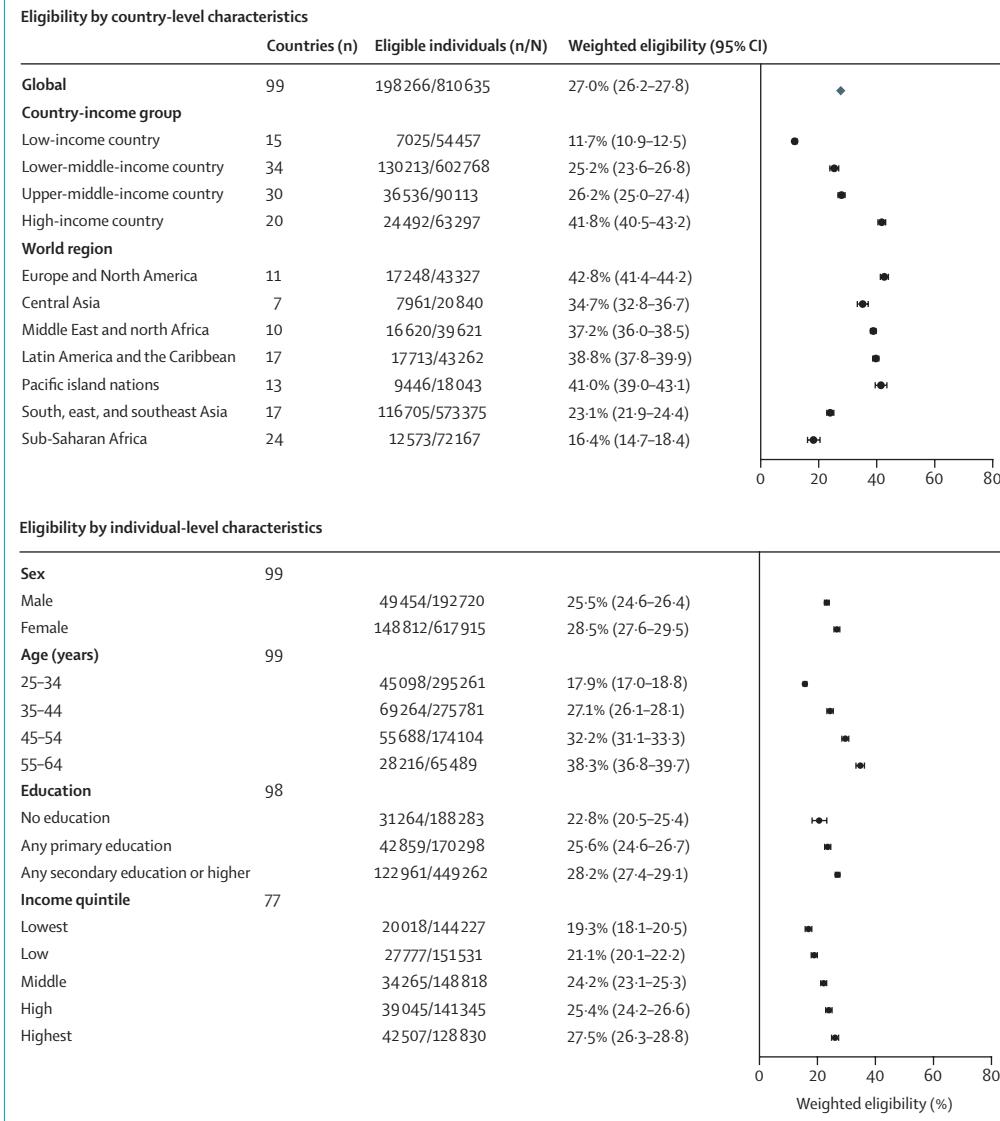


## GLP-1 receptor agonists for obesity: eligibility across 99 countries

Obesity is a complex, multifactorial condition defined by excessive adiposity and associated health risks.<sup>1</sup> The rising prevalence of obesity contributes to the increasing global burden of obesity-related diseases, such as type 2 diabetes and cardiovascular diseases, placing immense strain on health-care systems and economies worldwide. Behavioural interventions, such as diet and exercise, have long been the foundation of obesity management, yet many individuals face challenges in achieving and maintaining substantial long-term weight loss through these approaches alone, especially in current obesogenic environments.<sup>2</sup>

GLP-1 receptor agonists, including combination formulations with glucose-dependent insulinotropic polypeptide, have emerged as an effective therapeutic class for management of obesity and its complications.<sup>3,4</sup> Governments and international agencies, such as WHO, are creating guidelines and exploring policies and programmes to integrate the use of obesity management medicines, such as GLP-1 receptor agonists, into routine care for weight management and cardiometabolic risk reduction in individuals who are at high risk.<sup>5</sup> Understanding the potential demand and socioeconomic implications of GLP-1 receptor agonists is important for the effective design of such policies and programmes. Thus, we aimed to estimate and characterise the adult population eligible for GLP-1 receptor agonists for weight management using nationally representative health surveys and key inclusion criteria from trials to guide such policies.

We analysed pooled, individual participant data from nationally representative, cross-sectional household health surveys conducted in 99 countries between 2008 and 2021 (appendix pp 2–67). Our


sample comprised non-pregnant individuals aged 25–64 years with an available diabetes biomarker, blood pressure measurement, and BMI measurement, as well as complete data on hypertension and diabetes diagnoses (appendix pp 69–75). Eligibility for GLP-1 receptor agonists was determined by applying the inclusion criteria from key randomised clinical trials.<sup>3,4</sup>

Individuals were defined as eligible for GLP-1 receptor agonists for weight management if they had a BMI of 30 kg/m<sup>2</sup> or more or a BMI of 27 kg/m<sup>2</sup> or more with hypertension or diabetes, or both—two common weight-related comorbidities. Hypertension was defined based on measured blood pressure and diabetes was defined based on glycaemic markers (HbA<sub>1c</sub> and



This online publication has been corrected. The corrected version first appeared at [thelancet.com/diabetes-endocrinology](https://thelancet.com/diabetes-endocrinology) on January 12, 2026

See Online for appendix



**Figure: GLP-1 receptor agonist eligibility by country-level and individual-level characteristics**

All analyses included sampling weights that we rescaled by the size of each country's 2020 population aged 25–64 years, using the 2024 UN Population Prospects. Country-income group refers to the World Bank per capita country-income categories in the year each survey was conducted. World regions are adapted from the Non-communicable diseases Risk Factor Collaboration classification. Education data was unavailable in the survey from Tokelau. Income data was unavailable in the surveys from Bangladesh, Barbados, Belarus, Burkina Faso, Costa Rica, Czech Republic, El Salvador, England, Iraq, Libya, Malawi, Malta, Nepal, Nigeria, Pakistan, Qatar, Spain, Tokelau, Turkmenistan, the USA, Venezuela, and Wallis and Futuna.

plasma glucose). We did not consider other obesity-related comorbidities, such as obstructive sleep apnoea or cardiovascular disease, because data were not consistently available across surveys. For countries in the south, east, and southeast Asian region, we adjusted the eligibility to a BMI of 28 kg/m<sup>2</sup> or more or a BMI of 24 kg/m<sup>2</sup> or more with hypertension or diabetes, or both, in line with regionally based clinical trials.<sup>6</sup> All statistical analyses included sampling weights that we rescaled in proportion to the countries' population sizes. This study was deemed exempt from regulation by the institutional review board at the University of Michigan (Ann Arbor, MI, USA; HUM00201307).

The overall pooled sample included data from 810 635 individuals from 99 countries. According to World Bank country-income group, 15 surveys were conducted in low-income countries, 34 in lower-middle-income countries, 30 in upper-middle-income countries, and 20 in high-income countries. All but 27 surveys were WHO STEPS surveys. The median response rate was 87%. The mean age of respondents was 38 years (SD 9.7), and 617 915 (48.9%) of respondents were women (appendix pp 76–78).

An estimated 27.0% (95% CI 26.2–27.8) of the total pooled sample were eligible to receive a GLP-1 receptor agonist. Incorporating age-stratified UN 2020 population size estimates, this corresponds to approximately 799.0 million individuals (appendix p 100). By country-income group, eligibility was 11.7% (95% CI 10.9–12.5) in low-income countries, 25.2% (23.6–26.8) in lower-middle-income countries, 26.2% (25.0–27.4) in upper-middle-income countries, and 41.8% (40.5–43.2) in high-income countries (figure). 34.6% (33.7–35.6) were eligible due to the presence of hypertension or diabetes, or both, for individuals with a BMI of 27 kg/m<sup>2</sup> or more (or BMI  $\geq 24$  kg/m<sup>2</sup> in Asia; appendix pp 101–103, 107). Eligibility for GLP-1 receptor agonists for weight

management varied substantially across world regions. The highest eligibility was observed in Europe and North America (42.8%, 95% CI 41.4–44.2) and the Pacific Islands (41.0%, 39.0–43.1; figure). In south, east, and southeast Asia, although 23.1% were eligible for GLP-1 receptor agonists, this region accounted for the largest absolute number of eligible individuals (appendix p 100).

Women were more likely to be eligible (28.5%, 95% CI 27.6–29.5) than men (25.5%, 95% CI 24.6–26.4). Eligibility increased with age, ranging from 17.9% (17.0–18.8) among individuals aged 25–34 years to 38.3% (36.8–39.7) among individuals aged 54–64 years (figure). In the overall sample, GLP-1 receptor agonist eligibility was higher among households with higher income. When stratified by country-income group, eligibility increased with household income in low-income and lower-middle-income countries. In contrast, in high-income countries, eligibility was highest among households in the lowest income quintiles (appendix p 106).

A previous study reported that 129.2 million individuals in the USA are eligible for semaglutide for weight management.<sup>7</sup> Building on this finding, to our knowledge, we provide the most extensive global estimates of GLP-1 receptor agonist eligibility for obesity to date, showing that a substantial population across all economic strata worldwide would also qualify for GLP-1 receptor agonists. Currently, only a few high-income countries are likely to afford coverage for GLP-1 receptor agonists for obesity management, and the allocation criteria differ considerably between countries.<sup>8</sup> Data on the availability and use of GLP-1 receptor agonists for weight management in low-income and middle-income countries remain scarce.

Given the high levels of eligibility and the substantial costs associated with GLP-1 receptor agonists, their widespread implementation is unlikely to be feasible in many health systems at this time. Currently, the short-

term and long-term budget effects of implementing GLP-1 receptor agonists for obesity treatment are unknown. Thus, the key implementation challenge to use these medications lies in the ability of individual health systems to integrate considerations of cost, need, potential benefit, and the underlying infrastructure to support rational, high-quality, and sustainable obesity care.<sup>8</sup> Optimal implementation will require evidence-based, context-specific approaches. Our study provides the initial foundation to inform such policy decisions. Although our estimates show overall eligibility at the national level, countries might also want to identify patient subpopulations that could benefit most from GLP-1 receptor agonists, such as those with higher BMIs or multiple comorbidities. Moreover, the distribution of eligibility might have broader implications for how systems of obesity care should be designed and implemented. For instance, evidence suggests that patients with lower incomes, less health literacy, or access to fewer health resources who receive GLP-1 receptor agonists might require additional support for adherence.<sup>9</sup>

Lastly, as these medications are introduced at a larger scale, health systems must be prepared to monitor and mitigate potential harms, including adverse effects and off-label use, and to support long-term adherence when needed. GLP-1 receptor agonists may not be preferred for many people, including those who could potentially benefit from them. Addressing the global rise in obesity requires a more comprehensive, multifaceted approach that integrates medical treatments with sustainable strategies, such as multilevel agricultural and food policies related to production, procurement, pricing, marketing, and sales, as well as obesity prevention policies.

This study has several limitations. First, we did not account for all weight-related comorbidities for which GLP-1 receptor agonists could be indicated; however, diabetes and hypertension are common and likely encompass the

greatest proportions of those eligible.<sup>7</sup> Second, we did not exclude individuals on dialysis, those with previous bariatric surgery, or those with contraindications to GLP-1 receptor agonists, such as medullary thyroid carcinoma and multiple endocrine neoplasia syndrome type 2, which are rare. This overestimation of eligibility is likely offset by the underestimation resulting from the restricted number of obesity-related comorbidities considered. Third, the BMI adjustment for Asian populations involved assumptions regarding lower BMI thresholds, which might not fully reflect the diversity of health risks within Asia as well as various pre-existing BMI thresholds in select countries. Fourth, the surveys were conducted in different years, which might introduce temporal variability in obesity prevalence; however, as obesity prevalence has been steadily increasing over time, our estimates are unlikely to overestimate current eligibility.<sup>1</sup> Fifth, our results are not representative of all countries worldwide, although our dataset of surveys from 99 countries is, to our knowledge, the most comprehensive available empirical evidence for global comparison. Sixth, data were not harmonised across differing diagnostic criteria. Seventh, the population estimates did not account for pregnant women. Finally, our data did not permit us to distinguish between type 1 and type 2 diabetes, although over 95% of patients with diabetes globally have type 2 diabetes.<sup>10</sup>

In conclusion, more than one in four adults in the study population qualify for GLP-1 receptor agonists for weight management, with almost four-fifths of those eligible residing in low-income and middle-income countries. The scale of potential eligibility for GLP-1 receptor agonists, combined with their high costs, demands strategic, tailored policies and programmes to integrate GLP-1 receptor agonists in routine care that are based on clinical priority, cost-effectiveness, and health-care delivery capacity.

RA has grants and contracts with Novo Nordisk, Novartis Foundation, Virchow Foundation, and the Gates Foundation unrelated to the study. RA received Honoria for lectures and presentations for Merck, unrelated to the study. MDH has received travel support from the World Heart Federation and consulting fees from PwC Switzerland. MDH has pending patents for heart failure polyps. MDH has an appointment at The George Institute for Global Health, which has a patent, license, and has received investment funding with intent to commercialise fixed-dose combination therapy through its social enterprise business, George Medicines. CA has received honoraria and sat on the advisory boards and steering committees for AstraZeneca and Novo Nordisk. SGKY was supported by the National Institutes of Health, grant number T32 HL007081. DF was supported by the US National Heart, Lung, and Blood Institute (award K23HL161271), the Michigan Center for Diabetes Translational Research (award P30DK092926), the University of Michigan Claude D Pepper Older Americans Independence Center (award 5P30AG024824), and the University of Michigan Caswell Diabetes Institute Clinical Translational Research Scholars Program. JMG was supported by the US National Heart, Lung, and Blood Institute (award 1R01HL172907-01A1). All other authors declare no competing interests.

*\*Sang Gune K Yoo†, Felix Teufelt, Michaela Theilmann, Yajuan Si, Elhadji A Toure, Krishna Aryal, Till Bärnighausen, Abdul Bait, Marta Barreto, Pascal Bovet, Luisa C C Brant, Sarah Cuschieri, Albertino Damasceno, Farshad Farzadfar, Asher Fawwad, Pascal Geldsetzer, Ian R Hambleton, Corine Houehanou, Christina Howitt, Jutta Jørgensen, Juan P González-Rivas, Demetre Labadarios, Maja Marcus, Joao Martins, Omar Mwalim, Ramfis Nieto-Martínez, Augustine N Odili, Binur Orazumbekova, Gastón Perman, Sarah Quesnel-Crooks, Sahar Saeedi Moghaddam, Ronel Sewpal, Mafalda Sousa-Uva, Mubarak A Sulola, Kavita Venkataraman, Sebastian Vollmer, Sim Xueling, Rifat Atun, José R Banegas, Juan V A Franco, Clare Arnott, Nomathemba Chandiwana, Mark D Huffman, Justine Davies, Mohammed K Ali, David Flood‡, Jennifer Manne-Goehler‡, syoo@georgeinstitute.org.au*

†Contributed equally.

‡Contributed equally.

Cardiovascular Division, Washington University School of Medicine, St Louis, 63110 MO, USA (SGKY, MDH); Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA (FT, MKA); Emory Global Diabetes Research Center, Woodruff Health Sciences Center and Emory University, Atlanta, GA, USA (FT); Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA (MT, EAT, MM, JMG); Harvard Medical School, Harvard University, Boston, MA, USA (MT); Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA (YS); Medical Practice Evaluation Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (EAT, JMG); Bergen Centre for Ethics and Priority Setting in Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (KA); Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany (TB, PG); Harvard Center for Population and Development Studies, Cambridge, MA, USA (TB); Director, Indus Diabetes and Endocrinology Center, Indus Hospital and Health Network, Karachi, Pakistan (AB); Department of Epidemiology, National Health Institute Doutor Ricardo Jorge, Lisboa, Portugal (MB, MS-U); Ministry of Health, Victoria, Seychelles (PB); University Center for Primary Care and Public Health (Unisanté), Lausanne, Switzerland (PB); Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (LCCB); Faculty of Medicine and Surgery, University of Malta, Msida, Malta (SC); Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique (AD); Department of Public and Forensic Health Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal (AD); Non-Communicable Diseases Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran (FF); Faculty of The Basic Medical Sciences, Baqai Medical University, Karachi, Pakistan (AF); Baqai Institute of Diabetology and Endocrinology, Karachi, Pakistan (AF); Division of Primary Care and Population Health, Stanford University, Stanford, CA, USA (PG); George Alleyne Chronic Disease Research Centre, Caribbean Institute for Health Research, The University of the West Indies, Bridgetown, Barbados (IRH, CHOW); Laboratory of Epidemiology of Chronic and Neurological Diseases, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin (CHOU); Global Health Section, Institute of Public Health, University of Copenhagen, Copenhagen, Denmark (JJ); Department of Training and Research, Mnazi Mmoja Referral Hospital, Zanzibar, Tanzania (JJ); Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA (JPG-R, RN-M); Foundation for Clinic, Public Health, and Epidemiology Research of Venezuela, Caracas, Venezuela (JPG-R, RN-M); Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa (DL); Institute of Public Health, Charité—Universitätsmedizin Berlin, Berlin, Germany (MM); Faculty of Medicine and Health Sciences, National University of East Timor, Dili, Timor-Leste (JM); Ministry of Health, Zanzibar City, Tanzania (OM); Precision Care Clinic Corp, Saint Cloud, FL, USA (RN-M); Circulation Health Research

Laboratory, College of Health Sciences, University of Abuja, Abuja, Nigeria (ANO); Wolfson Institute of Population Health, Queen Mary University of London, London, UK (BO); Department of Public Health, Instituto Universitario Hospital Italiano de Buenos Aires, Buenos Aires, Argentina (GP); Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago (SQ-C); Kiel Institute for World Economy, Kiel, Germany (SSM); Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran (SSM); Public Health, Societies and Belonging, Human Sciences Research Council, Pretoria, South Africa (RS); Public Health Research Centre, National School of Public Health, Lisbon, Portugal (MS-U); Comprehensive Health Research Center, Lisbon, Portugal (MS-U); Department of Economics and Centre for Modern Indian Studies, University of Goettingen, Goettingen, Germany (SV); Saw Swee Hock School of Public Health, National University Singapore, Singapore (SX, KV); Department of Global Health and Population, Harvard T H Chan School of Public Health, Boston, MA, USA (JPG-R, RN-M, RA); Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain (JRB); Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain (JRB); Institute of General Practice, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (JVAF); Faculty of Medicine, University of New South Wales Sydney, Sydney, NSW, Australia (CA); Cardiovascular Program, The George Institute for Global Health, Sydney, NSW, Australia (CA); Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa (NC); Global Health Center, Washington University School of Medicine, St Louis, MO, USA (MDH); School of Public Health, Washington University School of Medicine, St Louis, MO, USA (MDH); Institute of Applied Health Research, University of Birmingham, Birmingham, UK (JD); MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa (JD); Centre for Global Surgery, Department of Global Health, Stellenbosch University, Cape Town, South Africa (JD); Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA (DF); Center for Indigenous Health Research, Wuqu' Kawoq, Tecpán, Guatemala (DF); Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala (DF)

Published Online  
December 3, 2025  
[https://doi.org/10.1016/S2213-8587\(25\)00392-4](https://doi.org/10.1016/S2213-8587(25)00392-4)

- 1 Phelps NH, Singleton RK, Zhou B, et al, and the NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. *Lancet* 2024; **403**: 1027-50.
- 2 Sattar N. Rethinking obesity through the lens of genetics, environment and differential life circumstances. *Lancet Diabetes Endocrinol* 2025; **13**: 822-24.
- 3 Wilding JPH, Batterham RL, Calanna S, et al, and the STEP 1 Study Group. Once-weekly semaglutide in adults with overweight or obesity. *N Engl J Med* 2021; **384**: 989-1002.

- 4 Jastreboff AM, Aronne LJ, Ahmad NN, et al, and the SURMOUNT-1 Investigators. tirzepatide once weekly for the treatment of obesity. *N Engl J Med* 2022; **387**: 205-16.
- 5 WHO. Public notice and comments on the Guideline Development Group for WHO rapid advice guideline on the use and indications of GLP1 RAs for management of adults living with obesity. World Health Organization, 2024. <https://www.who.int/news-room/articles-detail/public-notice-and-comments-on-the-gdg-for-who-rapid-advice-guideline-on-the-use-and-indications-of-glp1-ras-for-management-of-adults-living-with-obesity> (accessed Jan 20, 2025).
- 6 Zhao L, Cheng Z, Lu Y, et al. Tirzepatide for weight reduction in Chinese adults with obesity: the SURMOUNT-CN randomized clinical trial. *JAMA* 2024; **332**: 551-60.
- 7 Shi I, Khan SS, Yeh RW, Ho JE, Dahabreh IJ, Kazi DS. Semaglutide eligibility across all current indications for US adults. *JAMA Cardiol* 2025; **10**: 96-98.
- 8 Dellgren JL, Persad G, Emanuel EJ. International coverage of GLP-1 receptor agonists: a review and ethical analysis of discordant approaches. *Lancet* 2024; **404**: 902-06.
- 9 Rodriguez PJ, Zhang V, Gratzl S, et al. Discontinuation and reinitiation of dual-labeled GLP-1 receptor agonists among US adults with overweight or obesity. *JAMA Netw Open* 2025; **8**: e2457349.
- 10 Ong KL, Stafford LK, McLaughlin SA, et al, and the GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet* 2023; **402**: 203-34.

## Social learning theories and metabolic health: the centenary of Bandura's birth

100 years ago, on Dec 4, 1925, Albert Bandura was born in a small rural Canadian town with limited educational resources. Encouraged by parents who valued education, he developed a remarkable motivation for self-learning and would go on to become one of the most influential social-cognitive psychologists of all time.<sup>1</sup>

Bandura's work, particularly his focus on observational learning and the concept of self-efficacy, offers a valuable perspective on the epidemic rise of metabolic disease.

His most famous study, the Bobo doll experiment in 1961, demonstrated that early relationships are based on identification: children

learn and acquire new behaviours primarily through observation and mimicry. In this experiment, a group of children observed an adult behave aggressively toward an inflatable doll, whereas another group watched an adult play quietly with other toys in the room. Children who witnessed the aggressive behaviour were more likely to reproduce it.<sup>1</sup>

This principle of observational learning and modelling is highly relevant to understanding contemporary health behaviours.

The obesogenic environment we live in has been a major driver of rising rates of obesity and type 2 diabetes. Although public health initiatives attempt to change this environment, our eating habits and lifestyle choices are established and reinforced within our social context. Adults, and especially children, observe and imitate health-related behaviours, such as dietary habits and physical activity, modelled by family, peers, and influential figures in the media and politics. Bandura's theory of social learning helps explain how behaviours that undermine metabolic health are established, normalised, and transmitted across generations.

Bandura's theories extend beyond imitation: a key predictor of behaviour change is the concept of self-efficacy<sup>1,2</sup> (ie, the individual's belief in their ability to perform actions needed to achieve a goal). Today's food environment undermines self-efficacy through aggressive lobbying and advertising for cheap ultra-processed food, and economic and social pressures that limit access to healthier options. As underscored in a recent *Lancet* Series, the unchecked proliferation of ultra-processed food<sup>3-5</sup> is largely driven by corporate interests—the relentless pursuit of profit maximisation, at the expense of public health and societal wellbeing. Although many people understand the importance of healthy diets and behaviours, most lack confidence (ie, exhibit low self-efficacy) that