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In a recent paper, Thomas Philippon argues that total factor productivity (TFP) has historically
followed an additive rather than an exponential growth path. Exponential TFP modelling is part
of the fiscal and macroeconomic surveillance toolbox at the European level. The corresponding
state-space model and its Bayesian estimation are part of the Commonly Agreed Method (CAM)
for the estimation of potential output growth. Given the high relevance of the CAM for eco-
nomic policy, we propose a model that introduces the idea of additive growth through a simple
transformation of the data, while maintaining the structure of the state-space model and the
estimation procedure. The adaptation of the current estimation methodology used by the Euro-
pean Commission and member states of the European Union (1) improves the forecast error in
the long run and (2) obtains reliable estimates of the short-run gap. Using US data and data for
the 6 largest European countries, we are able to reduce the RMSFE by 35 percent on average for
various forecast horizons compared to the CAM.
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1 Introduction

In a recent paper, Philippon (2022) argues that total factor productivity (TFP) can be better
described as a process involving additive fixed increments rather than exponential growth with
fixed growth rates. The additive model performs extremely well with US long-run data, and is
shown to be superior to the exponential growth model in a number of other countries.

Regrading short-run forecasting, the differences between an additive and an exponential
model are inconsequential; however with increasing forecast horizon, the differences between
the two models get substantial.

In 2024, the fiscal surveillance in the European Union (EU) was reformed. Long-run pro-
jections for fiscal sustainability have come under scrutiny. This implies a shift in the focus of
macroeconomic analysis and forecasting. While business cycle analysis to calculate structural
budget balances at the current edge was the main focus in former years, the long-term potential
growth now carries more weight. The question arises whether this shift should be reflected in
the methods applied by the European Commission and the member states of the EU for medium
and long-run forecasts.

Both, European Commission and the member states of the EU, use the so-called Commonly
Agreed Method (CAM) for the purpose of potential output estimations and medium to long-run
forecasting. The CAM is based on the production function approach. Capital, labour and TFP
follow their own independent models. In this paper, we focus on the TFP since it shows — as it
is constructed as a residual — the largest revisions, even in the short to medium term (Boysen-
Hogrefe and Hoffmann, 2024). This stands in contrast to the modeling of the capital stock and
potential labor, which incorporates multiple economic variables and the theoretical relationships
between them. TFP estimation is based on the model described by Planas, Roeger, and Rossi
(2013). The state-space model considers log TFP to be an observable variable. Assuming
that changes in log TFP are approximately constant implies exponential growth in levels. This
assumptions follows, not least, from standard exogenous growth theory and from endogenous
growth models such as Romer (1986). A Bayesian estimation is conducted for the model and
the POWG deliberates on the priors. In principle, this TFP model can provide projections
for any forecast horizon. However, Philippon’s results may suggest that, in the long run, a
model implying exponential growth may be unsuitable. Conversely, the additive model with a
fixed increment discussed in Philippon (2022) lacks the flexibility to capture the business cycle
in most of the European countries. Actually, a major advantage of the Planas, Roeger, and
Rossi (2013) model is that short run dynamics are included via an indicator measuring capacity
utilization.

For this reason, we propose modifying the state-space model in the CAM. For this purpose,
we do not take logs, but instead rescale the TFP so that the first two moments of the log TFP
are met. This rescaling enables us to use the same estimation routine as in the current CAM.
Following the estimation of the trend TFP, the results are rescaled back. We can demonstrate
that the proposed modification would have provided more accurate long-run forecasts in recent
decades and that the revisions would have been smaller compared to the state-space model with
log TFP. Furthermore, our adaptation is straightforward to implement, as it requires neither
changes to the underlying model structure nor adjustments to the assumed priors. This increases
the likelihood of adoption by policymakers, such as the European Commission. In addition, we
show that essential in-sample characteristics of the original CAM model are invariant to our



modification. Most notably, it preserves the estimated TFP gaps, implying that past economic
assessments based on the existing CAM methodology need not be revised.

Longer run forecasts are often found to be too optimistic (Estefania-Flores et al., 2022), the
exponential modeling of the TFP may one reason for this. Since the corresponding forecast
errors can have a relevant impact on public budgeting and economic policy (Ademmer and
Boysen-Hogrefe, 2022; Beaudry and Willems, 2022), the paper contributes to the question how
to achieve reliable fiscal planning with the goal of sustainable public finances.

The remainder of the paper is structured as follows. Section 2 covers additive growth, while
section 3 presents the TFP model applied in the CAM and the modification proposed in this
paper. Sections 4 and 5 are devoted to the presentation of the data and the results. Section 6
concludes.

2 Additive Growth

In standard growth theory with exogenous productivity growth, TFP, denoted by SRy, is as-
sumed to follow a constant or highly persistent growth rate, g, in logs:

STi1r = gT + STy, (1)
with 7 > 0 and sry = log SR;. Thereby, TFP follows an exponential growth path in levels, i.e.,
SRt+7- = (1 + g)TSRt. (2)

Endogenous growth models such as Romer (1986) also imply multiplicative and exponential
growth, respectively.

In contrast, Philippon (2022) suggest on the bases of the datasets provided by Fernald (2014)
and Bergeaud, Cette, and Lecat (2016) including 23 countries and 123 years that TFP growths
with fixed increments b:

SRt-‘rT =br + SRt (3)

The fixed increments are country-specific and remain constant over long periods of time. Struc-
tural breaks in b are triggered by major discoveries such as the introduction of electricity.! That
means that TFP increases linearly in levels. Still, labour productivity is convex in time and
livings standards are rising at an accelerating pace (Philippon, 2022). Sampi (2024) also finds
evidence of additive growth for most high-income countries, although the evidence for middle-
income countries is limited. Assuming that productivity growth is linear, this partly resolves
the productivity growth puzzle, as fixed increments translate into declining productivity growth
rates.

In economic theory, innovations are the main driver of productivity growth (Romer, 1990).
Philippon (2022) argues that previous inventions boost productivity but do not necessarily
stimulate (the likelihood of) new discoveries. This is either because the sequence of discoveries

'A generalized long time model is E[SR;+1 — SR:] = (1 — p)b; + p¢SR, with probably of a regime change
p € [0,1] and multiplicative parameter . This specification nests both, additive and multiplicative growth
(Philippon, 2022). Either a major new discovery, such as the invention and application of artificial intelligence,
or improvements in the allocation of talents, such a the rise of women investors, may represent a potential break
point (Charles I. Jones, 2023).



is linear or bounded, i.e., an invention yields only a limited number of downstream benefits.
Or it is because the sequence itself is not indefinite, implying that inter-temporal spillovers are
limited. Moreover, knowledge can become outdated (Alston and Pardey, 2022; Pfeiffer, Varga,
and Veld, 2024). As a consequence, the current stock of knowledge does not influence future
TFP growth. And a constant increment leads to decreasing TFP growth rates. This finding is
consistent with the extant literature on the productivity growth slowdown, which posits that
there are departures from exponential growth theory (e.g. Bloom et al., 2020; Charles I Jones,
2017; Pfeiffer, Varga, and Veld, 2024). Diminishing marginal returns in the innovation process
could be a key driver: discoveries may be harder to find. Then, exponential growth requires
exponentially increasing research effort to counteract slowing productivity (Bloom et al., 2020;
B. F. Jones, 2009; Kruse-Andersen, 2023).

3 Econometric Approach

In this section, we briefly outline the trend TFP estimation of the EU Commonly Agreed
Method (CAM) along with our adjustments. We also describe the evaluation procedure.

3.1 Commonly Agreed Method

On EU and country level, potential output is estimated by the CAM. The estimate of potential
output, Y POT, builds on a Cobb-Douglas production function approach,

YPOT = TFPT - LP* - K'™°, (4)

where T F PT is the trend TFP estimate, LP is potential labour, K is the capital stock, and «
is the elasticity of labour.? The three inputs, labour, capital, and TFP, are estimated by three
different and independent models. The unobserved component model to describe TFP is based
on Planas, Roeger, and Rossi (2013). In the measurement equations, log TFP is considered as
a observable variable, denoted by sr;.3 TFP is separated into a trend component p; and a cycle
¢t The cycle itself depends on a capacity utilization indicator, cus, to exploit the theoretical
link between TFP and capacity utilization: While the economy’s capacities are fully utilised
and productivity increases in times of high aggregate demand, the opposite holds during a
negative output gap. Subsequently, the model can better distinguish between business cycle
and growth and thereby reduces revisions of TFP estimations, especially at the current edge
(Planas, Roeger, and Rossi, 2013, Graff and Sturm, 2012, D’Auria et al., 2010, and Turner et
al., 2016).* The European Commission uses the Capacity-Utilization-and-Business-Sentiment
(CUBS) indicator as a proxy for cus. The CUBS is constructed as a weighted average of a direct
measure of capacity utilization in industry and two business sentiment indicators regrading the
capacity utilization in services and in the construction sector (Havik et al., 2014). The error

term e, is modeled as a mean-zero AR(1) to allow for persistent deviations between CUBS,

?In section 3.1, we stick to the variable labels of Havik et al. (2014).

3The usage of log is indicated below by the use of lower case letters, e.g., log SRy = sr+.

4Tt is even possible to add more survey data to further reduce revisions, e.g., Carstensen, KieBner, and Rossian
(2024).



cuy, and the cycle, ¢;. Thus, the measurement equations are

STy =pt + ¢t (5)

Cuy = ey + Beg + Ccu,t (6)
iid

Ceu,t = 5cu€cu,t71 + Qeuts Qey,t ™~ N(O, ‘/;u)7 (7)

with [dey| < 1. The trend component of TFP, p;, in which we are interested, follows a random
walk with slope p;. The slope is defined as an AR(1) process with intercept. Therefore, as
t — T for a sufficiently large T', Ap; converges to unconditional mean growth rate, implying
exponential growth of TFP in levels (mean-reversion property). The description of the cycle,
¢, completes the state equations. The cycle is assumed to follow a mean-zero AR(2) process
with periodicity 7 > 0 and amplitude A € [0, 1]:

Apy = -1 (8)
o
pe = w(l = p) + ppe—1 + aus, aut ~ N(0,V,) (9)
2 ..
cy = 2Acos (:) ct—1 — Aci_g + acy, et N, V), (10)

where |p| < 1.

The CAM is estimated using a Metropolis-within-Gibbs sampler. By employing a Bayesian
approach, it is possible to overcome stability issues that can arise with maximum likelihood.?
The priors are aligned with those provided by the European Commission and remain un-
changed.b

3.2 Adjusted CAM

To align the CAM with the idea of Additive Growth, we propose an adjusted methodology.
In contrast to the conventional approach, which applies a logarithmic transformation to the
Solow residuals (SR), this adjustment avoids log-linearization altogether. Instead, it introduces
a moment-based rescaling of the untransformed data to align it with the statistical properties
required for the CAM estimation and its associated priors. Specifically, the original Solow
residuals SR, are standardized and shifted using the transformation

SR, —
SRscale == Olog + Hiogs (11)

u

where (uy,0, > 0) denote the mean and standard deviation of the untransformed SR, and
(H1og, Olog > 0) represent the corresponding moments of the log-transformed residuals. This
transformation ensures that the scaled series retains distributional properties similar to the
logarithmized data, thereby enabling consistent application of the CAM and its priors. After
estimating the trend TFP component via the CAM, the results are rescaled back to the original
scale of the untransformed data to facilitate interpretation. This adjusted procedure preserves
the benefits of the CAM framework while mitigating the exponential growth assumption im-
plicitly made by the log transformation.

By including Solow residual data in levels rather than in logs, we redefine the mean-reversion
property implied by equation 9. In the log specification, the TFP trend converges to a constant

"Havik et al. (2014) provides more details.
5The prior distributions can be found in the AMECO data base following circabc.europa.eu.


https://circabc.europa.eu/ui/group/671d465b-0752-4a2e-906c-a3effd2340ba/library/b9482682-d5a0-47a1-9281-bc7d8a214629

growth rate as ¢t — T for a sufficiently large T'. Similarly, when specified in levels, the TFP
trend converges to a constant increment, directly linking to the notion of additive growth.
Furthermore, these increments are not fixed. Insetad, they are allowed to converge gradually
due to the auto-regressive component — either from below during a recovery or from above
during a boom. Compared to a linear trend with fixed increment, this modeling assumption
offers two advantages: First, it introduces flexibility into the TFP trend. While a linear trend
smooths over recessions and booms, our specification allows for a degree of procycality, yielding
more accurate and resolvable output gap estimates, comparing to other estimates such as survey
indicators (Planas, Roeger, and Rossi, 2013). Second, this flexibility is bounded, as the trend
still converges to a constant increment in the long run.

As a benchmark, we estimate trend TFP using the standard CAM approach based on log-
transformed Solow residuals, referred to as CAM (log). In addition to the CAM-based methods,
we include a simple linear trend model, denoted as lin. This specification corresponds to the
main approach employed by Philippon (2022), wherein trend TFP evolves deterministically
over time. By including both CAM and linear trend approaches, we aim to capture a range of
assumptions about the nature of TFP dynamics, from purely deterministic to richly stochastic.

3.3 Forecast Experiment

To evaluate the forecasting performance of the different trend TFP estimation methods, we
conduct an quasi-real-time out-of-sample forecast experiment based on an expanding window
approach. For each iteration, the model is re-estimated using all available data up to time ¢,
and forecasts are generated for horizons h € {1,5,10}. It is important to note that forecast
errors, particularly at medium- and long-term horizons, tend to exhibit serial correlation due to
the overlapping nature of the forecast windows and the persistent structure of macroeconomic
variables. Therefore, we restrict Diebold-Mariano (DM) tests for predictive accuracy to horizons
h € {1,5}. Since TFP is a latent variable, it is generally not possible to compare predictions
with its true values to assess forecast accuracy. Instead, we rely on the most recent estimate
from the CAM model (log) for the year 2026 as a proxy.

A special emphasis is placed on the horizon T + 20, which corresponds to the minimum fore-
cast length required under the European Union’s revised fiscal surveillance framework. However,
given the limited availability of observations that extend far enough beyond the end of the esti-
mation window, we are unable to compute meaningful forecast error statistics for this horizon.
Consequently, we restrict our analysis of the T" 4 20 forecasts to a graphical comparison across
models. This qualitative assessment provides insights into the longer-run implications of each
trend estimation method, despite the absence of a formal quantitative evaluation at such ex-
tended horizons. Nevertheless, the results corresponding to the horizon 7" + 10 should offer
a quantitative indication of model performances at longer ranges, and thus provide a useful
benchmark.

3.4 Revisions and Procyclicality

Besides the forecast accuracy, we are interested in the magnitude of the revisions in a real-time
setting. Assessing the magnitude of the revisions also allows us to examine potential procycli-
cality. Although the CAM is designed to extract the TFP trend component of TFP, analyses
indicate that its trend estimate exhibit cyclical behavior (Boysen-Hogrefe and Hoffmann, 2024).



Revisions are defined as the difference between consecutive estimates of the same vintage, with
step size k > 1. We denote revisions at time s + k for period ¢ as Rf+k, with ¢ = 1,...,T,
s=1,...5,and s > t. They are defined as follows:

~ stk o~

RYF = SR, — SR;, (12)
where 51\%: represents the estimate of the TFP trend for period ¢, made at time s. For simplicity
and in line with Carstensen, Kiefiner, and Rossian (2024) and Planas, Roeger, and Rossi (2013),
we focus on one- and four-step-revisions (k = 1,4) and t = s—2,s—1,...,s+ 2 in our analysis.
By summing over s, we compute the root mean squared error as a summary measure of the

magnitude of revisions and define it for clarity as

S—k
1
s=1

Similar to Theil’s U, we compare the RMSR of a model with its benchmark on a relative scale:

RMSR!

RR, = —"—L
" RMSR?

(14)
where RM SR and RM SRY represent the mean revisions for model m and its benchmark b,
respectively. The CAM serves as our benchmark model.

4 Data and Stylized Facts

We assess the forecasting performance via data from the European Commission’s AMECO
database. Solow residuals, which proxy for total factor productivity (TFP), and capacity uti-
lization indicators (CUBS), are obtained form this source. The sample covers the United States
and the six largest European economies — Germany, France, Italy, Spain, the Netherlands, and
the United Kingdom — over the period from 1980 to 2026. This time frame allows us to capture
both long-run growth dynamics and cyclical variations in productivity.

During the sample periods, TFP tends to follow a linear trend in levels (Figure 1). This
observation is consistent with the additive growth hypothesis, where productivity evolves along
a deterministic linear path. Alternatively, the data may also be reconciled with an exponential
growth model punctuated by recurrent structural breaks, suggesting periods of regime change
or persistent shocks. Importantly, there are notable differences in the TFP trajectories between
the United States and the European economies. In line with the results of Philippon (2022),
deviations from the linear trend in Europe may reflect a catch-up effect. These transatlantic dif-
ferences — or more precisely, differences between countries at and below the productivity frontier
— highlight the importance of modeling flexibility, such as that offered by the CAM framework,
when estimating and interpreting productivity trends across heterogeneous economies. This
is especially relevant given that the most recent slowdown in TFP growth in Europe appears
more pronounced than would be expected at the end of a typical catch-up period (Philippon,
2022). There a several possible channels for this difference, e.g., a misallocation of factors in
low-income countries as Restuccia and Rogerson (2017) argue. For southern European countries
such as Portugal and Spain, Reis (2013) links the slowdown in productivity growth following
their entry into the Euro area to a misallocation of substantial capital inflows. Gopinath et al.
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Figure 1: Solow Residual data
Note: The Solow residual data (black) spans the years 1980-2026. A linear regression line (red) is

included to illustrate the deviation of the observed data from a purely additive growth path.

(2017) arrive at a similar conclusion, identifying misallocation in Spain and Italy, but not in
France or Germany.

For the revision analysis, we use real-time data on Solow residuals and the CUBS for the
same five EU countries — Germany, France, Italy, Spain, and the Netherlands — provided by
Carstensen, Kiefiner, and Rossian (2024). The authors also collected the data from the European
Commission’s AMECO database. Since the CUBS indicator was first published in 2009, they
constructed pseudo-real-time vintages for the years 2005 to 2008. The dataset includes two
projections per year (spring and autumn), beginning with the autumn forecast of 2005 and
ending with the autumn forecast of 2021.

To avoid structural breaks, we rescale the real-time data. For all vintages, we set the 1990
value equal to the 1990 value of the last vintage, autumn 2021. By multiplying of the year-
and vintage-specific growth rates, we obtain smoothed time series. Although the smoothing
methodology requires arbitrary assumptions such as the year to fix, other smoothing approaches

yield similar results.”

7 An alternative smoothing approach is to compute the ratio of 10-year averages of TFP values between the last
and another vintage. Multiplying by this ratio also generates a smooth time series. In practice, both smoothing
methodologies yield almost identical results.



5 Results

5.1 TFP Cycles

The in-sample estimates of the TFP gap under the adjusted CAM specification (skal) are nearly
indistinguishable from those obtained using the standard CAM with log-transformed residuals
(log), across all countries in the sample. This close alignment suggests that the proposed trans-
formation preserves the core dynamics captured by the original CAM approach. In contrast,
the linear trend specification (lin) yields systematically different gap estimates, often diverg-
ing significantly from those implied by the CAM framework. These differences underscore the
limitations of purely deterministic models in capturing cyclical fluctuations in productivity.
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Figure 2: TFP cycles
Note: TFP cycles for several countries based on the CAM (log, slid line), adjusted CAM (skal, red
dotted line), and linear model (/in, dashed line). Models are estimated over 1980-2026.

Crucially, our adjusted method (skal) succeeds in preserving the gap structure of the stan-
dard CAM while avoiding the potentially problematic logarithmic transformation. As a result,
the adoption of skal does not imply any need to 'rewrite economic history’: historical TFP gap
estimates remain stable and consistent with previous findings, while the model gains in flexibility

and applicability, particularly in cases where the log transformation may be inappropriate.

5.2 Forecast Performance

We evaluate the three models using root mean squared forecast errors (RMSFE) at horizons h €
{1,5,10}, and report Theil’s U statistics relative to the benchmark CAM with log-transformed



residuals (log). Theil’s U values below one indicate superior forecast accuracy compared to the
benchmark.

The results reveal a clear distinction between the two alternative specifications. The adjusted
CAM (skal) consistently outperforms the benchmark across countries and horizons, with Theil’s
U values typically well below one — particularly at medium and longer horizons (h € {5,10},
Table 1). As expected, the forecast accuracy of the adjusted CAM increases with the forecast
horizon, as the difference between linear and exponential growth becomes substantial for large
h. More surprisingly, even one-year-ahead Theil’s U is smaller than one for almost all countries.
Spain is the exception here. Nevertheless, the forecast accuracy increases by around 30 percent
across the country sample. For larger time horizons, the average increase in accuracy is around
35 percent for h = 5 and 40 percent for A = 10. Despite the small number of observations, a
DM-test supports a significantly better forecast accuracy for horizon h = 1. Due to the lack
of observations, the difference between the projections becomes less significant for the medium-
term (h = 5). Latest for the long term, h = 10, the sample size is too low to deliver interpretable
results for the DM-test.

The results suggests that the skal transformation retains the desirable properties of the
original CAM — the TFP cycle remains nearly untouched — while offering improved forecast
accuracy. By contrast, the linear trend model (lin) performs significantly worse, with Theil’s
U values often exceeding one by large margins, especially at shorter horizons, where short-run
fluctuations are more relevant. The exception are the USA for medium and large horizons and
the Netherlands as well as the UK for large horizons. These differences underscore the impor-
tance of preserving a model-based estimate of cyclical TFP dynamics for accurate projection —
especially for short-term dynamics.

Furthermore, the level of improvement varies between the countries and depends on the
degree of linearity of the Solow residual data (Figure 3). For the US, where Solow residuals
follow a linear trend almost entirely (Figure 1), Theil’s U is smallest. That is also the reason
while the linear trend (lin) performs best for the US and large forecast horizons. In contrast,
countries with a smaller degree of linearity within their Solow residuals such as Italy show a
higher Theil’s U, i.e., a smaller improvement of the forecast accuracy due to the scaling.

For the European fiscal surveillance, even larger forecast horizons are needed (at least 7"+
20). While an assessment of out-of-sample forecast errors reaches its limits due to the lack
of observations, a graphical analysis might support previous findings. Therefore, we create
projections for all three models (log, skal, and lin) with ex post data up the years 2000, 2010,
and 2020 and compare it with the current estimate of the TFP trend (Actual). The results
emphasize the previous findings: For large horizons, the adjusted CAM would have provided
more accurate projections (Figure 4). Nevertheless, an upward bias seems to be present in all
models: compared to the current trend TFP estimation, all three predictions would have been

too optimistic.

5.3 Revision Analysis

For the purpose of fiscal planning it is not just the accuracy but also the stability of forecasts
that matters. In this context, minimizing model revisions is essential. To asses this aspect, we
compare our adjusted CAM with the current version by shifting the evaluation setting from
pseudo-real-time to real-time, thereby allowing for data revisions. We examine a subsample of



Table 1: RMSFE and Theil’s U for h € {1,5,10}

GER FRA ESP ITA NET UK Us
h=1
TFPo; RMSFE x101°  1.98 6.46 0.47 1.92 3.46 6.75 2.75
TP RMSFE x1019 1.18***  5.16** 0.50 1.72%% 2,09  3.20"*  1.51*
skal  Pheil’s U 0.60 0.80 1.06 0.90 0.60 0.47 0.55
. RMSFE x1010  9.48** 34.41** 8.64** 16.12*** 13.91** 19.54**  4.90*
i Pheils U 4.79 5.33 18.27 8.39 4.02 2.89 1.78
26 observations
h=5
TFP, RMSFE x10® 0.14 0.40 0.02 0.12 0.25 0.45 0.19
TFP RMSFE x10%  0.07** 0.29 0.02 0.10* 0.15 0.22 0.10
skal  peils U 0.51 0.74 0.90 0.86 0.59 049  0.52
. RMSFE x108 0.23 0.81 0.18 0.44** 0.35 0.48 0.11
i Theils U 1.64 2.04 9.08 3.69 1.42 1.08 0.57
22 observations
h=10
TFPo RMSFE x10® 0.54 1.76 0.05 0.45 1.20 2.01 0.78
TEP RMSFE x108 0.22 1.17 0.03 0.36 0.67 0.90 0.30
skal - Theils U 0.41 0.66 0.68 0.81 0.56 0.45 0.39
TEP RMSFE x108 0.54 1.83 0.37 1.12 0.87 1.11 0.20
i Pheils U 1.00 1.04 7.46 2.49 0.72 0.55 0.26

17 observations

Note: Root Mean Squared Forecast Errors are scaled to standardised powers of ten. Theil’s U

measures the relative forecast accuracy compared to the variant log. Bold values indicate the best

forecast accuracy for the specific country and forecast horizon. Models are estimated over 1980-2026.

Due to the large autocorrelation of errors for large forecast horizons, a Diebold-Mariano test is left

out for h = 10.

Significance levels: Stars indicate statistically significant differences based on the Diebold-Mariano
test for predictive accuracy: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 3: Linearity and forecast performance
Note: Linear regression of the Theil’s U of the adjusted CAM (skal) (c.f. Table 1) on the R? of the
Solow residual data (c.f. Figure 1).

the years from 2005 to 2019 out of the years from 1980 to 2023 for which TFP is estimated. This
choice shall guarantee an a sufficient large base sample for model estimates. We compute the
one-step (k = 1, left panel) and four-step (k = 4, right panel) revisions and observe a almost
identical revision pattern of the CAM (log) and the adjusted CAM (skal) (Figure 5).* The
linear model reveals a very similar but less diverse revision pattern, at least for the one-step
revisions. The revisions of all three models seem to follow the output gap and are thereby
procyclical. This becomes particularly clear in the case kK = 4. The output gap is estimated as
the deviation of the CUBS indicator which captures the aggregated capacity utilization from
its mean. Consequently, the German TFP trend estimates are revised downward in 2007 due
to the financial crisis and in 2019 due to the energy crisis.

To quantitatively analyze the revisions, we compute the RMSR, as defined in equation 13,
for horizons h € {—2,—1,...,2}. This means we evaluate the revisions for the last ex post year
of the latent TFP (where the vintage year coincides with the estimated year, i.e., h = 0), as
well as for the two years preceding and following that year. Once again, we distinguish between
two cases: one-step (k = 1) and four-step (k = 4) revisions.

For Germany and France, the RMSR rises steadily with h (Table 2). For France, the
benchmark RMSR values are larger than those in Germany. For both countries, the adjusted

8The same figures for France, Spain, Italy, and the Netherlands can be found in appendix B. The same pattern

is evident in every country.
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Figure 5: Revisions for vintages from 2006 to 2021 in Germany
Note: The figure shows how the TFP estimates for Germany of the years from 2005 to 2021 (the
forecast year, colored lines) change throughout the various vintages (2006 to 2021). The results are
presented for all three models. The revisions, R; +* as defined in equation 12, are shown for k = 1
(one-step revisions, left panel) and k = 4 (four-step revisions, right panel). Aligning the revisions with
the output gap (black, dot-dashed line on the right-hand axis) suggests procyclicality. The output gap

is estimated as the deviation of the CUBS indicator from the most recent vintage (2021) from its mean.
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Table 2: RMSR and relative revisions

one-step (k=1) four-step (k =4)

h -2 -1 0 1 2 -2 -1 0 1 2

TFP,, RMSR x10° 0.72 080 091 107 123 130 138 150 1.69 1.96

RMSR x10° 0.72 078 0.88 1.01 1.14 128 135 145 1.60 1.80
RR 0.99 098 09 094 093 0.99 0.98 0.96 0.95 0.92

GER TFPskal

RMSR x10° 0.80 0.83 0.86 0.89 0.92 191 200 209 219 228

TFPlin
RR 1.10 1.04 0.94 0.83 0.75 147 145 139 129 1.17

TFPo RMSR x10° 1.56 1.66 1.77 190 2.04 230 245 266 293 3.26

RMSR x10° 1.47 154 1.62 1.72 1.83 227 230 238 250 2.68
RR 095 093 091 09 090 0.99 0.94 0.89 0.85 0.82

FRA TFPskal

RMSR x10° 1.46 1.53 1.60 1.66 1.73 263 2.77 291 3.06 3.20

TFPin
RR 0.94 0.92 0.90 0.87 0.85 114 113 1.10 104 098

TFPo RMSR x10° 0.79 082 087 094 1.02 1.72 177 185 198 2.12

RMSR x10° 0.79 0.82 0.86 0.92 1.00 1.72 1.76 1.82 1.92 2.04

TF Pia
ESP “l " RR 1.00 0.99 0.99 0.98 0.98 1.00 0.99 0.99 0.97 0.96

RMSR x10° 0.86 0.90 0.94 098 1.02 189 198 207 216 225

TF Piin
RR 1.09 110 108 104 1.00 1.10 1.12 112 1.09 1.06

TFPo RMSR x10° 040 055 0.73 093 1.12 057 0.71 0.88 1.08 1.30

RMSR x10° 0.38 0.53 0.71 090 1.09 056 0.69 086 1.05 1.27

TF Psa
ITA “l " RR 0.97 097 097 098 098 0.98 0.98 0.98 0.98 0.98

RMSR x10° 0.59 0.63 0.66 0.69 072 186 197 209 220 2.32

TF Py
RR 1.50 1.15 0.90 0.74 0.65 3.24 277 236 205 1.79

TFPo RMSR x10° 2.07 2.21 2.37 257 279 391 421 458 5.03 5.55

RMSR x10° 2.12 226 243 262 282 3.8 4.16 4.55 5.00 550
NET TFPSkal

RR 1.02 1.02 1.02 1.02 1.01 0.99 0.99 0.99 0.99 0.99

— RMSR x10>° 2.18 2.29 239 250 2.60 4.59 480 5.02 523 545

in " RR 1.05 1.04 1.01 0.97 0.93 1.17 1.14 1.10 1.04 0.98
Observations 16 12

Note: Root Mean Squared Revisions (RMSR), as defined in equation 13, are scaled to standardised
powers of ten. One-step (k = 1) and four-step (k = 4) revisions are computed. RR measures the relative
revisions compared to the baseline model log as defined in equation 14. Bold values indicate the
minimum revision for each forecast horizon, defined as h =t — s. Since t € {s — 2,5 —1,...,s+ 2}, it
follows that h € {—2,—1,...,2}. Models are estimated over 1980-2023.
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CAM (skal) consistently reduces the revisions, with RR < 1 for all h and k. The results suggest
a greater robustness, particularly at longer forecast horizons, in two respects. First, RR declines
steadily with h, reaching values of 0.93 for £ = 1 and 0.92 for k = 4 in the case of Germany. For
the French data, the RR falls even further to 0.90 for kK = 1 and 0.82 for £ = 4. This implies
that even in the short term, defined as two-years-ahead forecast, the revisions of French TFP
projections are reduced by around 20 percent when comparing today’s projection with that
made four years later. Second, as already observed in the previous example, the gains for the
four-step revisions are larger than the ones of the one-step revisions. In the four-step case, it
even consistently achieves the lowest RMSR of all three methodologies for both countries. This
is particularly important for policymakers which rely on long-term stable forecasts.

The linear model performs worse than the benchmark CAM at short horizons, i.e., RR > 1
for h € {—2,—1}, but improves substantially for longer horizons (h > 0), with RR dropping
to 0.75 at h = 2 in the German data. For France, the linear model reduces revisions across all
h. However, this holds only for the one-step case. With respect to the four-step revisions, the
linear models performs almost consistently worse than both the benchmark and the adjusted
CAM. This means that while the linear model may yield smaller revisions than the benchmark
between yearly projections, both CAM specifications produce lower revisions from a long-term
perspective.

Spain and Italy exhibit the lowest benchmark RMSR values in the country sample. The
adjusted CAM slightly reduces the revisions across the board, with RR € (0.97,1). The linear
model performs worse than both the benchmark and the adjusted CAM across horizons in these
two countries. In the one-step case and for h > 0, the linear models performs best for the Italian
data (RR = 0.65 at h = 2).

The Netherlands stand out with the largest benchmark RMSR among countries. The ad-
justed CAM performs almost identical to the benchmark CAM, with RR =~ 1.02 for the one-step
case (k = 1) and RR =~ 0.99 for the four-step case (k = 4). The linear model again performs
worse than both the benchmark and adjusted CAM with the exception of h > 1 in the one-step
case and h = 2 in the four-step case.

Overall, the adjusted CAM provides clear improvements in terms of revision robustness
for Germany and France, while Spain and Italy show moderate gains. In contrast, there is
neither an improvement nor a deterioration for the Dutch data. The model thus appears to
represent a conservative modification with respect to revisions, giving modest improvement in
most countries, with most RR < 1. This holds particularly for the four-step case, in which the
adjusted CAM performs best across all countries. This implies that the adjusted CAM produces
the most robust TFP projections from a long-term perspective. Furthermore, the gains in
robustness increase steadily with the forecast horizon h. This suggests that the advantages of
the adjusted CAM relative to the benchmark CAM become even more pronounced in the long
run. This finding is important, as 10-step revisions cannot be reliably assessed due to data
limitations. The linear model also yield more stable projections at larger horizons, particularly
for Germany, France, Italy, and the Netherlands. Only Spain shows no improvements. However,
the linear model tends to produce larger revisions at the current edge and, overall, performs
worse across horizons than both the benchmark and the adjusted CAM in the four-step case.

15



6 Conclusion

Recent evidence points more convincingly towards a linear, rather than exponential, trajec-
tory of TFP growth. In line with this, we propose a simple adjustment of the current CAM
framework. The adjusted specification (skal) preserves the essential in-sample characteristics
of the original CAM model. Most notably, it maintains the estimated TFP gaps, implying that
there is no need to revise or reinterpret past economic assessments based on the existing CAM
methodology.

While the forecast gains may appear in some cases modest in absolute terms, they are present
across all major European economies in our sample. Especially at longer horizons, forecasts
generated by the skal specification tend to be systematically closer to realized outcomes than
those produced by either the benchmark CAM (log) or the linear trend model (lin). On average,
the adjusted CAM improves forecast performance by approximately 30 percent relative to the
benchmark in the short term (A = 1) and 40 percent in the long term (A = 10). In a real-
time data setting, the adjusted CAM exhibits forecast revisions that are smaller than or equal
to those of the benchmark CAM. This holds particularly for revisions conducted at four year
intervals, in which the adjusted CAM performs best across all countries. Furthermore, the gains
in robustness increase steadily with the forecast horizon h. This suggests that the advantages of
the adjusted CAM relative to the benchmark CAM become even more pronounced in the long
run. The linear model reduces revisions relative to the benchmark CAM only for large horizons
and in a year-to-year comparison. However overall, the model performs worse across horizons
than both the benchmark and the adjusted CAM from a long-term perspective. This finding
suggests that the linear model lacks the necessary modeling flexibility, such as that offered by
the CAM framework, needed to estimate productivity trends across heterogeneous economies.
While the linear model generates reasonable long-run TFP trajectories for the US, its forecast
performance for the diverse European countries is generally worse than that of the benchmark.
This flexibility is particularly relevant, as the slowdown in TFP growth in Europe appears more
pronounced than would typically be anticipated at the conclusion of a standard catch-up period.

As a practical consequence of adopting Additive Growth, both productivity levels and growth
rates are lower than under exponential growth in the current methodology. Whereas the bench-
mark CAM assumes an average yearly TFP increase of 0.80 percent over the next 20 years,
the adjusted CAM assumes 0.65 percent. This downward adjustment has direct implications
for the fiscal framework: lower potential growth reduces the scope for debt reduction through
growth alone and may require more cautious assumptions budgetary planning.
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Appendix

A Procyclicality

Table 3: Procyclicality

h=-2 h=-1 h=0 h=1 h=

TFPog 0.11 0.05 -0.05  -0.19 -0.27

GER rppy 009 003  -0.05 -0.18 -0.26
TFPy,  -0.03  -0.03 -0.04 -0.04 -0.05
TFPo, 008 008 007 005 003

FRA rpp,. 007 007 006 003 0.00
TFPiy 008 008 009 009 0.9
TFPo 041 036  -0.28 -021 -0.12

ESP rppi. 041 -036 -028 -0.19 -0.10
TFPy  -040  -0.40  -0.40 -0.39 -0.39
TFPo, 030 025 019 015 0.13

ITA rppy, 032 026 019 015  0.13
TFPy  -0.09  -0.10 -0.10 -0.11 -0.11
TFPo, 017 017 016 014 0.11

NET

TFPy 017 017 0.6 0.14 0.12

TF By 0.12 0.13 0.13 0.14 0.14

16 observations

Note: The procyclicality is measured as correlation (ranging
from 0 to 1) between the revisions of the estimated TFP trend
for each horizon and the output gap. The latter is estimated as
the deviation of the CUBS indicator from the most recent
vintage (2021) from its mean. Bold values indicate the smallest
correlation in absolute terms for each forecast horizon and
country.
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Figure 6: Revisions for vintages from 2006 to 2021 in France
Note: The figure shows how the TFP estimates for France of the years from 2005 to 2021 (the forecast
year, colored lines) change throughout the various vintages (2006 to 2021). The results are presented
for all three models. The revisions, R} +1 are defined in equation 12 with s = t. Aligning the revisions
with the output gap (black, dot-dashed line on the right-hand axis) suggests procyclicality. The output
gap is estimated as the deviation of the CUBS indicator from the most recent vintage (2021) from its

mean.
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Figure 7: Revisions for vintages from 2006 to 2021 in Spain
Note: The figure shows how the TFP estimates for Spain of the years from 2005 to 2021 (the forecast
year, colored lines) change throughout the various vintages (2006 to 2021). The results are presented
for all three models. The revisions, R} +1 are defined in equation 12 with s = t. Aligning the revisions
with the output gap (black, dot-dashed line on the right-hand axis) suggests procyclicality. The output
gap is estimated as the deviation of the CUBS indicator from the most recent vintage (2021) from its

mean.
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Figure 8: Revisions for vintages from 2006 to 2021 in Italy
Note: The figure shows how the TFP estimates for Italy of the years from 2005 to 2021 (the forecast
year, colored lines) change throughout the various vintages (2006 to 2021). The results are presented
for all three models. The revisions, R} +1 are defined in equation 12 with s = t. Aligning the revisions
with the output gap (black, dot-dashed line on the right-hand axis) suggests procyclicality. The output
gap is estimated as the deviation of the CUBS indicator from the most recent vintage (2021) from its

mean.
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Figure 9: Revisions for vintages from 2006 to 2021 in the Netherlands
Note: The figure shows how the TFP estimates for the Netherlands of the years from 2005 to 2021 (the
forecast year, colored lines) change throughout the various vintages (2006 to 2021). The results are
presented for all three models. The revisions, Ry +1are defined in equation 12 with s = t. Aligning the
revisions with the output gap (black, dot-dashed line on the right-hand axis) suggests procyclicality.

The output gap is estimated as the deviation of the CUBS indicator from the most recent vintage

(2021) from its mean.
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C Revisions of the Moments

This appendix reports additional results on the revisions of the first two moments of the Solow
residuals. Those are needed for the rescaling of the data (Equation 11). The figures illustrate

how these moments evolve across data vintages and countries.
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Figure 10: Revisions of the moments for vintages from 2006 to 2021 in Germany
Note: The first two moments of the Solow residual data are denoted as (fty, 0y > 0). (fiog, Tlog > 0)

represent the corresponding moments of the log-transformed residuals.
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Figure 11: Revisions of the moments for vintages from 2006 to 2021 in Spain
Note: The first two moments of the Solow residual data are denoted as (fy, 0y > 0). (Hiog; Tlog > 0)

represent the corresponding moments of the log-transformed residuals.
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Figure 12: Revisions of the moments for vintages from 2006 to 2021 in France
Note: The first two moments of the Solow residual data are denoted as (fty, 0y > 0). (fiog, Tlog > 0)

represent the corresponding moments of the log-transformed residuals.
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Figure 13: Revisions of the moments for vintages from 2006 to 2021 in Italy
Note: The first two moments of the Solow residual data are denoted as (fy, 0y > 0). (Hiog; Tlog > 0)

represent the corresponding moments of the log-transformed residuals.
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Figure 14: Revisions of the moments for vintages from 2006 to 2021 in the Netherlands
Note: The first two moments of the Solow residual data are denoted as (fty, 0y > 0). (Uiog; Tlog > 0)

represent the corresponding moments of the log-transformed residuals.
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